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Experimental studies of capillary-dominated displacements in variable-aperture fractures have demonstrated
the occurrence of a satiated state at the end of invasion, where significant entrapment of the displaced phase
occurs. The structure of this entrapped phase controls the behavior of flow and transport processes in the
flowing phase. Recent studies have shown that the areal saturation of the flowing phase at satiationsSfd is
largely controlled by a single parameterC/d, where C, the curvature number, weighs the mean in-plane
interfacial curvature relative to the mean out-of-plane interfacial curvature, andd, the coefficient of variation
of the aperture field, represents the strength of interface roughening induced by aperture variations. Here we
consider the satiated relative permeabilityskrsd to the flowing phase, which is defined as the relative perme-
ability when the defending phase is fully entrapped. The satiated relative permeability is shown to be a
well-defined function ofSf over a wide range ofC/d, ranging from capillary fingering with significant
entrapmentsC/d→0d to smooth invasion with very little entrapmentsC/d.1d. We develop a relationship for
krs as a function ofSf, by combining theoretical results for the effective permeability in a spatially correlated
random permeability field, with results from continuum percolation theory for quantifying the influence of the
entrapped phase. The resulting model forkrs also involves a dependence ond. The predicted relative perme-
ability values are accurate across the entire range of phase structures representative of capillary-dominated
displacements in variable-aperture fractures.

DOI: 10.1103/PhysRevE.71.031114 PACS numberssd: 46.65.1g, 47.55.Mh, 47.55.Kf, 47.54.1r

I. INTRODUCTION

The presence of two or more fluids within a fracture re-
duces the permeability to each phasef1–4g. This reduction in
permeability is often represented by the relative permeability,
which is the ratio of the permeability in two-phase flow to
that in single-phase flow and varies between 0 and 1. Experi-
ments and simulations have demonstrated that capillary-
dominated displacementssi.e., negligible gravity and viscous
forcesd in statistically homogeneous variable-aperture frac-
tures can result in a satiated condition in which the invading
phase spans the fracture and the defending phase is com-
pletely entrappedf5–7g. The satiated state corresponds to the
end of invasionsanalogous to the second percolation thresh-
old or trapping threshold defined by Wilkinson and Willem-
sen f5gd, unlike the invasion percolation threshold, which
corresponds to first breakthrough and spanning of the do-
main by the invading phase. The satiated state is established
over relatively short time scalesf6g and can persist within a
variable-aperture fracture for a very long duration, unless
disturbed by external forcesf8g or dissolution of the en-
trapped phasef9,10g. The flow and transport properties cor-
responding to the satiated state are thus important to a vari-
ety of applied problems. In this paper, our objective is to
develop a model for predicting the relative permeability un-
der satiated conditions.

The satiated relative permeabilityskrsd is controlled by the
geometry of the flowing phase at satiation, which is defined

by the configuration of entrapped regions and the aperture
variability induced by fracture surface roughness. During in-
vasion, small perturbations in capillary forces along the in-
vading interface, caused by local perturbations in interfacial
curvature, lead to roughening of the interface and entrapment
of the defending phase. The magnitude of interface roughen-
ing and the geometry of the resulting entrapped phase are
controlled by aperture variability within the fracture and the
contact angle between the invading and defending fluids at
the rock surfaces. Invasion percolationsIPd algorithms,
which have been widely used to simulate immiscible dis-
placements in porous mediaf5,11,12g and fracturesf13,14g,
sequentially fill sites with the largest value of

Pc = VS 1

r1
+

1

r2
D s1d

along the invading interface, wherer1 and r2 are the two
principal radii of interfacial curvature andV is the interfacial
tension. In porous media, Eq.s1d is typically applied by as-
sumingr1 and r2 are equal and proportional to the pore ra-
dius. In fractures,r1 is measured orthogonal to the mean
fracture planesFig. 1d. Becauser2 is typically much larger
than r1, r2 is often considered insignificant in determining
invasion ordersf13,14g. However, recent experimental stud-
ies f6g have demonstrated that in-plane interfacial curvature
can lead to significant smoothing of interfaces. As a result,
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phase geometries in two-phase flow through fractures can
deviate significantly from the behavior predicted by IP algo-
rithms.

A modified invasion percolation algorithmsMIPd that ac-
counts explicitly for bothr1 and r2 reproduces experimen-
tally observed phase geometries better than IPf6g. For each
iteration of the MIP algorithm,Pc is calculated at each loca-
tion along the invading interface usingsFig. 1d: r1
=a/2 cossa+bd and r2=sl /2dtansg /2d, wherea is the local
fracture aperture,a is the fluid-fluid contact angle at the rock
surfaces,b is the convergence-divergence angle of the op-
posing rock surfaces,g is the included angle between two
vectors that approximate the local interface from the invad-
ing fluid side, andl is the correlation length of the variable
aperture field;l /2 is used here as a characteristic in-plane
radius of curvature within a spatially correlated field. For
small values ofb and uniforma near 0 orp, we can neglect
b and nondimensionalize Eq.s1d in terms of the parameter
C=kal / sl cosad:

Pc
* =

1

r1
* + C

1

r2
* , s2d

where the asterisk represents dimensionless variablesssee
Glasset al. f6g for detailsd. In Eq. s2d, C weighs the relative
influences of mean in-plane and out-of-plane interfacial cur-
vatures.

Recent theoretical and computational results based on
MIP f15g demonstrate that a simple measure of the flowing
phase structure at satiation, the areal saturationsSfd, depends
strongly on the ratio ofC and d=sa/ kal, where kal is the
mean andsa the standard deviation of the aperture field,
respectively. Thus, for any capillary-dominated invasion pro-
cess in which values ofkal, sa, l, anda yield the same value
of C/d, the resulting entrapped-flowing phase structures will
be similar. Effectively,C measures the strength of smoothing
at the invading interface due to in-plane curvature, whiled
measures the strength of roughening caused by random ap-
erture variations, and it is the competition between these
mechanisms that controls phase geometry. ForC/d well be-
low 1, out-of-plane, aperture-induced curvature dominates,
and the phase structure corresponds to IP within a spatially
correlated field. AsC/d increases, capillary fingers widen to
above the spatial correlation length, due to smoothing gener-

ated by in-plane curvature. ForC/d well above 1, in-plane
curvature dominates, and the interface behaves as though in
a Hele-Shaw cell, with little or no entrapment of the defend-
ing phasessee Fig. 2d. Correspondingly, the areal saturation
sSfd at satiation ranges from about 0.37sC/d@0d to 1
sC/d@1d. In the intermediate range ofC/d s,1–10d, Glass
et al. f15g also observed a nonunique behavior ofSf at satia-
tion with respect to wetting versus nonwetting fluid inva-
sions. This nonunique behavior is due to asymmetry in com-
petition between the smoothing and roughening mechanisms,
which results from the asymmetric distribution of 1/a.

A useful model forkrs should adequately describe behav-
ior across the wide array of entrapped phase structures cor-
responding to the full range ofC/d. Nicholl et al. f7g pro-
posed a model forkrs that identified four controlling
parameters: a tortuosity factort, the areal saturation of the
flowing phase,Sf, and two parameters that quantify devia-
tions in the mean and variance of the aperture field within the
flowing phase from those in the entire fracture. They calcu-
lated values for each of these parameters for seven satiated
phase structures, demonstrating that the tortuosity played the
most significant role in determiningkrs. However, they did
not develop relationships for predicting the model param-
eters based on fracture and fluid properties. We present an
improved and general model that uses concepts from con-
tinuum percolation theory to develop a relationship between
krs andSf and explore this relationship over a broad range of
C/d. Our model leads to general predictive relationships for
krs in terms of fracture and fluid properties. It is important to
emphasize the distinction between this relationship and the
more commonly used relative permeability-saturation rela-
tionship in two-phase flows. The latter involves relative per-
meabilities at different saturation values corresponding to a
single invasion process. In contrast, thekrs-Sf relationship
does not correspond to a single invasion process. It repre-
sents the variation ofssatiatedd relative permeabilitykrs with
the areal saturation at satiationsSfd, which is in turn con-
trolled by C/d, the true “independent variable” in this con-
text. The model predictions agree well with computational
estimates of relative permeability obtained using flow simu-
lations in partially saturated fractures.

II. MODEL FOR krs

Our approach is similar to that of Nichollet al. f7g, who
proposed a theoretical expression for relative permeability in
a variable-aperture fracture by modifying a result for the ef-
fective transmissivity of a heterogeneous two-dimensional
mediumf16g to account for impermeable obstructions to the
flowing phasef17g. These theoretical expressions are ap-
proximations to the true effective transmissivity, in that they
invoke the local cubic law, which assumes that pressure gra-
dients across the aperture are negligible. However, Nichollet
al. f7g found that the relative permeability predicted by flow
simulations based on the local cubic law were within 10% of
experimentally measured relative permeabilities. This is evi-
dently because the relative influence of the entrapped phase
on the flow structure is substantially larger than the relative
differences between the flow structure predicted by the three-

FIG. 1. Schematic of two fluid phases within a rough-walled
fracture: sad cross section defining the aperture-induced radius of
curvature,r1, local aperturea, contact anglea, and convergence-
divergence angleb and sbd plan view snormal to fracture planed
defining the in-plane radius of curvature,r2, and included angleg
sfrom invading phased.

DETWILER, RAJARAM, AND GLASS PHYSICAL REVIEW E71, 031114s2005d

031114-2



dimensional Stokes equations versus the local cubic law.
Though Nichollet al. f7g measuredkrs in a range of different
phase structures, their experimental phase structures were not
generated by systematic phase invasions. In particular, their
phase structures did not cover the entire range ofSf corre-
sponding to the full range ofC/d and thus did not present a
complete picture ofkrs.

For a saturated variable-aperture fracture, the effective
transmissivity can be obtained using a perturbation analysis
on the flow equation:

= · fTsx,yd = hsx,ydg = 0, s3d

whereTsx,yd is the spatially variable transmissivity field and
h refers to the head field. The local transmissivity based on
the Reynolds equation is given by

Tsx,yd =
a3sx,ydg

12v
, s4d

whereasx,yd is the spatially variable-aperture field,g is the
gravitational acceleration, andv is the kinematic viscosity of
the fluid. Without making any assumptions about the specific
distribution ofTsx,yd sexcept that it is positived, a perturba-
tion analysis of Eq.s3d can be developed in terms of the
scaled transmissivity variationT8 / kTl, wherekTl is the mean
transmissivity. The analysis begins from

= ·FkTlS1 +
T8

kTl
D = skhl + h8dG = 0. s5d

The effective transmissivity for saturated flow, denoted here
by Tsat, is then quantified based on the relationship for the
mean flux in terms of the mean gradient:

kql = − kT = hl = Tsatk− = hl.

In the case of small perturbationssd!1d, T8 / kTl<3a8 / ā to
first order in the aperture variationsa8 and the effective
transmissivity for saturated flow in isotropic random aperture
fields can be shown to be

Tsat=
kal3g

12v
s1 − 1.5d2d. s6d

Expressions6d can also be obtained by a two-dimensional
extension of a Landau-Lifshitzf16g analysis of the effective
conductivity of a heterogeneous medium, as discussed by
Zimmerman and Bodvarssonf17g. In the case of a lognormal
aperture distribution with isotropic spatial correlation, a
similar small-perturbation analysis based on lnsTd yields the
result that the effective transmissivity is the geometric mean
of the transmissivity fieldf18–20g. For this case, Eq.s6d is a
consistent approximation to the geometric mean, to second
order ind.

For a partially saturated variable-aperture fracture, the ef-
fective transmissivitysdenoted asTpd can be represented by
modifying Eq.s6d with an additional reduction factor due to
the reduced area occupied by the flowing phasef7g:

Tp = krsi

kafl3

12
s1 − 1.5d f

2d. s7d

In Eq. s7d, the subscriptf refers to the flowing phase, so that
kafl andd f, respectively, represent the mean and coefficient
of variation of apertures in the region occupied by the flow-
ing phase. Note that the volumetric saturation of the flowing
fluid is equal toSfkal / kafl. The quantitykrsi in Eq. s7d rep-
resents the reduction of permeability obtained in a parallel-
plate fracturesor, equivalently, a homogeneous mediumd
with impermeable obstructions, whose geometries are iden-
tical to those of the entrapped phase.

We define the relative permeability as the ratio of Eq.s7d
to Eq. s6d:

krs = krsiAB, s8d

such that the total flow through a satiated fracture is repre-
sented byQ=krsTsatWk−=hl, whereW is the width of the
fracture. In Eq.s8d, A and B represent the influence of the
relative change in the mean and coefficient of variation of
the apertures occupied by the flowing phase from the corre-
sponding values in a fully saturated fracture:

A = kafl3/kal3, B = s1 − 1.5d f
2d/s1 − 1.5d2d. s9d

As shown in the next section, the strongest contribution tokrs
is from krsi, which is related to the entrapped phase geom-
etry. The termA is next in order of importance andB has a
very minor influence onkrs. We outline approaches for quan-
tifying each of these terms below.

Systematic simulations ofkrsi for a range ofC/d spre-
sented in Sec. IIId demonstrate that the behavior ofkrsi with
respect toSf is similar to that observed in continuum perco-
lation problemssi.e., linear dependence onSf nearkrsi=1 and
power dependence onSf nearkrsi=0d; thus, we invoke con-
cepts from continuum percolation to quantifykrsi. The typi-
cal continuum percolation problem considers percolation and
conduction in a homogeneous medium with randomly posi-
tioned identical “holes” as the area fraction of the holes is
varied. Thus the entrapped defending fluid phase at the sati-
ated state in variable aperture fractures corresponds to the
hole phase in continuum percolation. However, unlike in
standard continuum percolation, the geometry of the en-
trapped phase here is irregular, and there is considerable
variation in the size, shape, orientation and aspect ratios of
individual entrapped regionsfsee Figs. 2sbd–2sedg. The varia-
tion of conductivity with area fraction of the hole phase has
been considered extensively for the case of holes with regu-
lar shapes, such as circles and ellipses, squares and rect-
angles, and needlesf21–28g. In some studies of continuum
percolation se.g., f25gd, mixtures of holes with different
shapes and sizes have been considered, with the conclusion
that a scaled percolation thresholdsxc in f25gd at which the
conductivity goes to zero is almost invariant over a wide
range of continuum percolation systems. Garbocziet al. f25g
also proposed a universal conductivity curve for two-
dimensional continuum percolation systems, involving the
variablex, which is related to the remaining area fractionp
ssame as ourSfd asp=exps−xAh/Lef f

2 d, whereAh is the area
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of a single “hole” andLef f is a characteristic length defined
based on the initial slope of the conductivity curve. Their
universal conductivity curve is of the form

krsi = F s1 − x/x*ds1 + x/x* + ax2stxI − x*d/t2xI
2x*d

s1 + x/xId
Gt

.

s10d

In Eq. s10d, x* refers to the critical value ofx at which the
conductivity goes to zero,xI is a parameter defining the ini-
tial slopeskrsi ,1−tx/xI for x close to 0d, a s=0.7d is a fitting
parameter, andt is the conductivity exponentst=1.3 in two
dimensionsd.

Direct extension of Eq.s10d to the problem at hand is
complicated by two factors: the wide distribution of the area
Ah associated with a single hole, evident from the phase
structures shown in Fig. 2, and the nonlinear relationship
betweenSf sor pd and x that will lead to a complicated ex-
pression forkrsi. We therefore considered a linearized rela-
tionship betweenSf and x, where −lnf1−s1−Sfdg<1−Sf is
proportional tox. This leads to relationships in terms of 1
−Sf, rather thanx; we note that Xia and Thorpef24g also
expressed their conductivity relationships in terms of 1−Sf
stheir cd. To further simplify the expression forkrsi, we
dropped the last term in the numerator of Eq.s10d, which
also eliminates the fitting parametersad, and modified the
denominator to obtain a linear behavior of the formkrsi ,1
−s1−Sfd / s1−SfId for x close to 0, leading to

FIG. 2. Aperture field and example of satiated phase structure and flow paths:sad Aperture field, grayscale depicts smaller apertures with
darker shading;sbd wetting invasion,C=0, d=0.0625sIPd, Sf ,0.38;scd wetting invasion,C=0.0335,d=0.0625,C/d=0.536,Sf ,0.51;sdd
wetting invasion,C=0.134,d=0.0625,C/d=2.144,Sf ,0.74; andsed nonwetting invasion,C=0.134,d=0.0625,C/d=2.144,Sf ,0.69.
Invasion was from left to right; dark gray regions represent defending phase entrapped within the rough-walled fracture, white regions
represent the location of the invading phase at breakthroughsi.e., percolation thresholdd, light gray regions represent additional locations
occupied by the invading phase at satiation, and black shows the trajectory of 25 particles released along the inflow edge of the fracture. The
initial particle spacing was flux weighted.
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krsi = FS1 −
1 − Sf

1 − Sf
* DS1 +

1 − Sf

1 − Sf
* DYS1 +

1 − Sf

ts1 − SfId
DGt

.

s11d

In Eq. s11d, there are three parameters:Sf
* is the percolation

threshold at whichkrsi goes to zero,SfI is the point where the
initial slope for a small area fraction of holes crosses the
abscissa when extrapolated, andt is the conductivity expo-
nent, which has a value close to 1.3 in two dimensions
f22,25–28g. Both Sf

* andSfI depend on the aspect ratio of the
holes in generalf24,25g. Expressions11d is basically an in-
terpolant that is consistent with critical behavior near the
percolation thresholdfkrsi ,sSf −Sf

*dt as Sf approachesSf
*g

and linear behavior forSf near 1fkrsi ,1−s1−Sfd / s1−SfIdg,
two limits that are universally observed for continuum per-
colation f24,25,28g. Although Eq. s10d was not originally
developed for problems involving a wide range of sizes,
shapes, and orientations of the hole phase, results in the next
section show that the modified forms11d describes the be-
havior of krsi very well.

The secondary term in Eq.s8d, A, represents the influence
of the relative change in mean aperture within the flowing
phase. Thus we expectA.1 for nonwetting fluid flow and
A,1 for wetting fluid flow. A is also expected to depend
strongly ond, particularly for small values ofC. For C=0
sIP in a correlated latticed, the fluid phase geometries do not
vary with d. However, because of selective occupancy of the
aperture distribution, the mean aperture within the flowing
phase, and thusA, will be influenced byd. For standard
percolation sSPd, the invading phase occupies apertures
strictly in ascendingswettingd or descendingsnonwettingd
order, which allows development of an analytical expression
for A. However, this analytical expression does not provide
satisfactory estimates ofA for phase structures generated by
MIP in two-dimensional variable-aperture fractures, where
in-plane curvature effects lead to significant deviations from
the assumption of sequential occupancy. Therefore, we pro-
pose an empirical relationship forA that is based on an
analysis of aperture field statistics within the invading phase
over a large number of invasion simulationssdescribed in
detail in the following sectiond:

A = 1 ± bds1 − Sfd2, s12d

where b is a fitted parameter. The last termB in Eq. s8d,
which is a measure of the change in aperture variance from
the saturated state to the satiated state, has a very minor
influence, and thus we have not developed an analytical or
empirical relationship to quantify the influence ofB on krs.

III. EVALUATION OF THE krs-Sf MODEL

To evaluate the effectiveness of the model forkrs pro-
posed in the previous section, for use over a wide range of
aperture-field statistics and fluid properties, we simulated
flow through fractures containing phase structures generated
from MIP simulations by systematically varyingC/d f15g.
The aperture fieldss102432048d used for the simulations
were generated using a fast Fourier transformsFFTd algo-

rithm, with a Gaussian aperture distribution and a power
spectrum of the form

Gskx,kyd ~ s1 + l2kx
2 + l2ky

2d−n, s13d

wherekx andky are the wave numbers corresponding to thex
and y dimensions,n is an exponent in the range 1ønø2,
and l is a cutoff length scalef29g. This general form of
Gskx,kyd is widely accepted as a reasonable model for natu-
ral fractures where the apertures exhibit a self-affine struc-
ture with Hurst exponent,H=n−1 for uku.1/l and negli-
gible correlation foruku,1/l f30g. The functional form ofG
in Eq. s13d yields a smooth transition from power-law behav-
ior suku.1/ld to the cutoff valuesuku,1/ld that results in
random fields with well-behaved covariance functionssi.e.,
no oscillations as occur with an abrupt cutoffd. We chosel to
yield l=5 grid blocks for fields with zero mean, variance of
1, andn=1.3, wherel is defined as the separation distance at
which the semivariogram reaches a value ofsa

2s1−1/ed. We
generated six random fields and scaled each to yield fractures
with d=0.0625, 0.125, and 0.25, resulting in a total of 18
aperture-field realizationsfFig. 2sadg. Higher values ofd
yielded contact areas where the aperture is zero, which intro-
duced additional complications during phase invasion and
will not be addressed here.

In each of the 18 aperture fields, Glasset al. f15g simu-
lated wetting and nonwetting phase invasions using MIP for
14 values ofC that began at 0, followed by 0.0021 with
successive doubling up to 8.58, for a total of 504 simula-
tions. The invading phase was supplied across the entire edge
of one short side of the random field while the defending
phase was allowed to leave the field through the other three
sides. Defending phase trapping was implemented and the
simulation ended when all sites were either filled with invad-
ing phase or entrapped defending phase. The results of the
phase invasion simulations allow direct measurements ofSf,
A, andB, but estimatingkrs andkrsi requires flow simulations
in the fractures.

We simulated flow within the satiated phase structures by
solving a finite-difference representation of Eq.s3d in each
aperture-phase distribution field. We specified no-flux bound-
ary conditions at the interfaces between the flowing and en-
trapped phases, with uniform constant pressure boundaries
along the two short edges of the fractures and no flow bound-
aries along the long edges. The ratio of the simulated flow-
rate in the satiated fracture to that in the saturated fracture
provides an estimate ofkrs for a fracture occupied by a spe-
cific phase distribution. Similar computations in a hypotheti-
cal parallel-plate fracture with impermeable obstructions cor-
responding to the entrapped phase geometry led to estimates
of krsi.

IV. RESULTS

The results of the flow simulations demonstrate the influ-
ence of the entrapped phase on flow through satiated frac-
tures. Figures 2sbd–2sed show stream lines through fractures
at several values ofC/d after both wetting and nonwetting
invasions. ForC/d=0 fFig. 2sbdg, the flowing phase occupies
a small fraction of the total area, and the complex entrapped-
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phase structures result in large regions of flowing phase cap-
turing very little of the total flow through the fracture. This is
particularly evident in the center of the fracture where sev-
eral large entrapped regions nearly block flow. AsC/d in-
creasesfFigs. 2scd and 2sddg, the regions of entrapped de-
fending phase become more compact, leading to a larger
number of open flow paths through the center of the fracture,
less tortuous streamlines, and increasedkrs. Fundamental dif-
ferences in the entrapped phase result during wetting and
nonwetting invasions due to the order in which apertures are
filled along the invading interface. Figures 2sdd and 2sed
demonstrate that wetting and nonwetting invasions at the
same values ofC and d lead to different entrapped regions
within the same aperture field. Furthermore,Sf is larger for
the wetting invasion than the nonwetting invasion, which
leads to slightly more tortuous stream lines for the nonwet-
ting invasion.

The distributions of the apertures occupied by the invad-
ing fluid at satiation vary significantly for wetting versus
nonwetting invasionssFig. 3d. For small values ofC/d there
is little overlap between the distributions corresponding to
the wetting and nonwetting invasions and they are almost
symmetric about the mean aperture of the saturated fracture
skal=0.02 cmd. However, asC/d increases, the amount of
overlap increases as a result of enhanced interface smoothing
during invasion. Also, at larger values ofC/d, the distribu-
tions are no longer symmetric aboutkal. This asymmetry is
due to the asymmetric distribution of 1/a that corresponds to
a Gaussian distribution fora. Because aperture-induced cap-
illary pressure, which influences phase invasion, is propor-
tional to 1/a, asymmetry in the 1/a distribution leads to
different behavior along the invading interface for wetting
and nonwetting invasions. With a symmetric distribution for
1/a, the aperture distributions for wetting and nonwetting

invasions should be symmetric aboutkal for all values ofC
andd.

To evaluate the ability of the model presented in Eq.s8d to
predict krs, we calculated the relevant parameters obtained
from the 504 flow simulations. To clarify presentation of the
data, for each combination ofC and d we show only the
average parameter values from the 6 aperture-field realiza-
tions in the following plots. For each parameter, the standard
deviation across the 6 realizations was no larger than 11% of
the mean value and was typically less than 5%. This demon-
strates that the influence ofC/d on these parameters is more
significant than variability across realizations. Figure 4
showsSf plotted againstC/d and shows, as detailed by Glass
et al. f15g, thatSf exhibits a unique relationship withC/d for
small values ofC/d. At larger values ofd and C/d above
,0.5, measured values ofSf fan apart and then converge
again at large values ofC/d. Glasset al. f15g explained this
envelope based on the asymmetry in competition between
smoothing and roughening, which is related to the asymmet-
ric distribution of 1/a. Based on the relationship between
C/d andSf in Fig. 4 a relationship that effectively quantifies
krs as a function ofSf may be further generalized to directly
relatekrs to C/d.

The distribution of apertures occupied by the invading
fluid during wetting and nonwetting invasionssFig. 3d
strongly influences measured values ofA. In each aperture
field-realization,A was determined at each value ofd andSf
by computing the mean aperture value from pixels occupied
by the flowing phase. Figure 5 showsA plotted againstSf
with the results of fitting Eq.s12d to the data. The asymmetry
in the distributions of aperture occupied by the invading fluid
for the wetting and nonwetting invasionssFig. 3d results in
different values for the fitted parameterb: for nonwetting
invasionsb=4.59 and for wetting invasionsb=3.98. The fit-
ted curves for the wetting invasions deviate slightly from the
data for intermediate values ofSf, but fit the data well for
small values ofSf whereA has the largest influence on esti-
mates ofkrs.

Figure 6 showskrsi plotted againstSf for all values ofC/d
and compares these results to Eq.s11d, the proposed model

FIG. 3. Distributions of apertures occupied by the invading
phase at satiation for both wettingsopen symbolsd and nonwetting
ssolid symbolsd invasions. The thick solid line represents the aper-
ture distribution for the saturated fracture.

FIG. 4. AverageSf for six realizations plotted againstC/d for
both wetting sopen symbolsd and nonwetting ssolid symbolsd
invasions.
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of krsisSfd, with values ofSfI =0.72, Sf
* =0.333, andt=1.3.

The model fits the simulated values ofkrsi quite well across
the full range ofSf and only slightly overestimates the simu-
lated values in the range of 0.55,Sf ,0.85. The value of
0.72 for the parameterSfI, which is related to the initial
slope, was obtained based on a linear fit to simulatedkrsi near
Sf =1. With t=1.3, Sf

* =0.333 adequately represents the be-
havior of the simulatedkrsi values for the smallest values of
Sf. In continuum percolation theory,Sf

* corresponds the criti-
cal value at whichkrsi goes to zero and, in the context of
satiated phase structures, represents an absolute lower bound

for Sf at satiation. All satiated phase structures must corre-
spond toSf .Sf

* ; the lowest value observed in MIP simula-
tions over numerous realizations of random aperture fields
was 0.34 at the limit ofC/d=0 sthe mean value forC/d
=0 over 36 realizations is 0.37d. It is important to distinguish
the above interpretation ofSf

* from the value ofSf at first
breakthrough during MIP, which is as low as 0.23 forC/d
=0 and around 0.8 at large values ofC/d. It is interesting to
note that the value of 0.333 forSf

* corresponds to the perco-
lation threshold for continuum percolation with circular or
square holesf21,25,31g, although the actual geometry of the
entrapped phasessee Fig. 1d is much more complicated, in-
volving a wide range of sizes, shapes, orientations, and as-
pect ratios. Garbocziet al. f25g investigated the variation of
percolation threshold in mixed systems with circles of two
different diameters, needles with two different lengths, and
circle-needle mixtures. Their results showed minor variations
in the scaled percolation threshold about their proposed uni-
versal value. We are unaware of any systematic results for
continuum percolation with a broad distribution of size,
shape, and aspect ratios for the holes, for comparison with
our estimate ofSf. This and the explanation for why Eq.s11d
provides an excellent model forkrsi despite the complexity of
the entrapped phase structure appear to be interesting prob-
lems for further research.

Using Eqs.s11d and s12d to model krsi and A over the
range ofSf andd allows us to use Eq.s8d to estimatekrs over
the full range of parameters. Figure 7 compares the simu-
lated values ofkrs to estimates using Eq.s8d. The discrepan-
cies between the simulated results and the modeled estimates
of krs increase withd, the largest of which are around a 25%
difference between the modeled and simulated estimates of
krs. The largest discrepancies occur for the wetting invasion
at d=0.25 for krs,0.05 and for the nonwetting invasion at
d=0.25 forkrs=0.19. For smaller values ofd, the discrepan-
cies all fall well within the 20% bounds shown in Fig. 7.

FIG. 5. A plotted againstSf for all values ofd for both wetting
sopen symbolsd and nonwettingssolid symbolsd invasions.

FIG. 6. krsi plotted againstSf for all values ofd for both wetting
sopen symbolsd and nonwettingssolid symbolsd invasions.

FIG. 7. krs measured from flow simulations plotted againstkrs

estimated using Eq.s8d for both wettingsopen symbolsd and non-
wetting ssolid symbolsd invasions. The dashed lines represent the
±20% discrepancy bounds between the measured and modeled
results.
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V. SUMMARY

We have developed a model for predicting the satiated
relative permeability across a broad range of entrapped phase
structures in variable aperture fractures. These entrapped
phase structures represent both wetting and nonwetting dis-
placements over a full spectrum of possible Curvature num-
berssCd and a comprehensive set of fracture aperture statis-
tics sdd. The resulting entrapped phase ranged from highly
tortuous structures resulting from capillary fingering to com-
pact smooth structures at large values ofC/d. The satiated
relative permeabilityskrsd was shown to depend on the prod-
uct of krsi, which quantifies the influence of the phase geom-
etry alone, withA, which accounts for the modification of the
mean aperture due to the selective occupancy of the flowing
phase.

Our model for the satiated relative permeabilityskrsd uses
well-established ideas from continuum percolation theory to
relatekrsi with Sf. This generalized model forkrsi exhibits a
power function dependence onSf near Sf

* sthe percolation
thresholdd and linear behavior nearSf =1. The exponent in
the power-function behavior at lowSf is consistent with the
universal conductivity exponents1.3d for two-dimensional
percolation systems. The influence of aperture distribution
and the effect of wetting versus nonwetting invasions on the
mean aperture in the flowing phase are quantified through the
termA. We have proposed a robust empirical relationship for
A in terms ofSf andd. As expected,A is greater than 1 for
the nonwetting case and less than 1 for the wetting case and
deviations from 1 are amplified byd. Thus, for a given value

of Sf, krs will be larger for flow of a nonwetting fluid than for
a wetting fluid, with the difference enhanced at small values
of Sf and large values ofd.

Comparison of the semiempirical model forkrs to mea-
surements ofkrs resulting from flow simulations through six
fracture realizations over a range ofC and d demonstrates
that the model predictskrs quite well over the full range of
parameters. It is somewhat surprising that the influence of
the complex phase structures on permeability can be quanti-
fied as a functionSf, a simple measure of the phase structure.
However, it is likely that efforts to model other processes,
such as solute transport in the flowing phasef32g or en-
trapped phase dissolutionf8g, will require higher-order mea-
sures of the entrapped phase geometry. We note that the
model relateskrs to d andSf, which in turn is fundamentally
controlled byC/d for the case of capillary-dominated dis-
placements. Thus, for capillary-dominated displacements in a
given fracture it is possible to estimatekrs directly if the
fracture aperture statistics and contact angle at the interface
si.e., C, d, andad are known.
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